Humans combine the optic flow with static depth cues for robust perception of heading.

نویسندگان

  • A V van den Berg
  • E Brenner
چکیده

The retinal flow during normal locomotion contains components due to rotation and translation of the observer. The translatory part of the flow-pattern is informative of heading, because it radiates outward from the direction of heading. However, it is not directly accessible from the retinal flow. Nevertheless, humans can perceive their direction of heading from the compound retinal flow without need for extra-retinal signals that indicate the rotation. Two classes of models have been proposed to explain the visual decomposition of the retinal flow into its constituent parts. One type relies on local operations to remove the rotational part of the flow field. The other type explicitly determines the direction and magnitude of the rotation from the global retinal flow, for subsequent removal. According to the former model, nearby points are most reliable for estimating one's heading. In the latter type of model the quality of the heading estimate depends on the accuracy with which the ego-rotation is determined and is therefore most reliable when based on the most distant points. We report that subjects underestimate the eccentricity of heading, relative to the fixated point in the ground plane, when the visible range of the ground plane is reduced. Moreover we find that in perception of heading, humans can tolerate more noise than the optimal observer (in the least squares sense) would do if only using optic flow. The latter finding argues against both schemes because ultimately both classes of model are limited in their noise tolerance to that of the optimal observer, which uses all information available in the optic flow. Apparently humans use more information than is present in the optic flow. Both aspects of human performance are consistent with the use of static depth information in addition to the optic flow to select the most distant points. Processing of the flow of these selected points provides the most reliable estimate of the ego-rotation. Subsequent estimates of the heading direction, obtained from the translatory component of the flow, are robust with respect to noise. In such a scheme heading estimates are subject to systematic errors, similar to those reported, if the most distant points are not much further away than the fixation point, because the ego-rotation is underestimated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling heading and path perception from optic flow in the case of independently moving objects

Humans are usually accurate when estimating heading or path from optic flow, even in the presence of independently moving objects (IMOs) in an otherwise rigid scene. To invoke significant biases in perceived heading, IMOs have to be large and obscure the focus of expansion (FOE) in the image plane, which is the point of approach. For the estimation of path during curvilinear self-motion no sign...

متن کامل

Perception of heading without retinal optic flow.

How do we determine where we are heading during visually controlled locomotion? Psychophysical research has shown that humans are quite good at judging their travel direction, or heading, from retinal optic flow. Here we show that retinal optic flow is sufficient, but not necessary, for determining heading. By using a purely cyclopean stimulus (random dot cinematogram), we demonstrate heading p...

متن کامل

MST responses to pursuit across optic flow with motion parallax.

Self-movement creates the patterned visual motion of optic flow with a focus of expansion (FOE) that indicates heading direction. During pursuit eye movements, depth cues create a retinal flow field that contains multiple FOEs, potentially complicating heading perception. Paradoxically, human heading perception during pursuit is improved by depth cues. We have studied medial superior temporal (...

متن کامل

Dynamic reweighting of visual and vestibular cues during self-motion perception.

The perception of self-motion direction, or heading, relies on integration of multiple sensory cues, especially from the visual and vestibular systems. However, the reliability of sensory information can vary rapidly and unpredictably, and it remains unclear how the brain integrates multiple sensory signals given this dynamic uncertainty. Human psychophysical studies have shown that observers c...

متن کامل

Causal links between dorsal medial superior temporal area neurons and multisensory heading perception.

The dorsal medial superior temporal area (MSTd) in the extrastriate visual cortex is thought to play an important role in heading perception because neurons in this area are tuned to both optic flow and vestibular signals. MSTd neurons also show significant correlations with perceptual judgments during a fine heading direction discrimination task. To test for a causal link with heading percepti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Vision research

دوره 34 16  شماره 

صفحات  -

تاریخ انتشار 1994